Two Approximate Minkowski Sum Algorithms

نویسندگان

  • Victor J. Milenkovic
  • Elisha Sacks
چکیده

We present two approximate Minkowski sum algorithms for planar regions bounded by line and circle segments. Both algorithms form a convolution curve, construct its arrangement, and use winding numbers to identify sum cells. The first uses the kinetic convolution and the second uses our monotonic convolution. The asymptotic running times of the exact algorithms are increased by km logm with m the number of segments in the convolution and with k the number of segment triples that are in cyclic vertical order due to approximate segment intersection. The approximate Minkowski sum is close to the exact sum of perturbation regions that are close to the input regions. We validate both algorithms on part packing tasks with industrial part shapes. The accuracy is near the floating point accuracy even after multiple iterated sums. The programs are 10% faster than direct floating point implementations of the exact algorithms. The monotonic algorithm is 42% faster than the kinetic algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polygon Decomposition for Efficient Construction of Minkowski Sums

Several algorithms for computing the Minkowski sum of two polygons in the plane begin by decomposing each polygon into convex subpolygons. We examine diierent methods for decomposing polygons by their suitability for eecient construction of Minkowski sums. We study and experiment with various well-known decompositions as well as with several new decomposition schemes. We report on our experimen...

متن کامل

Pii: S0925-7721(01)00041-4

Several algorithms for computing the Minkowski sum of two polygons in the plane begin by decomposing each polygon into convex subpolygons. We examine different methods for decomposing polygons by their suitability for efficient construction of Minkowski sums. We study and experiment with various well-known decompositions as well as with several new decomposition schemes. We report on our experi...

متن کامل

Polynomial/Rational Approximation of Minkowski Sum Boundary Curves

Given two planar curves, their convolution curve is defined as the set of all vector sums generated by all pairs of curve points which have the same curve normal direction. The Minkowski sum of two planar objects is closely related to the convolution curve of the two object boundary curves. That is, the convolution curve is a superset of the Minkowski sum boundary. By eliminating all redundant ...

متن کامل

Polynomial/Rational Approximation of Minkowski Sum Boundary Curves 1

Given two planar curves, their convolution curve is defined as the set of all vector sums generated by all pairs of curve points which have the same curve normal direction. The Minkowski sum of two planar objects is closely related to the convolution curve of the two object boundary curves. That is, the convolution curve is a superset of the Minkowski sum boundary. By eliminating all redundant ...

متن کامل

Accurate Sampling-Based Algorithms for Surface Extraction and Motion Planning

GOKUL VARADHAN: Accurate Sampling-Based Algorithms for Surface Extraction and Motion Planning. (Under the direction of Dinesh Manocha.) Boolean operations, Minkowski sum evaluation, configuration space computation, and motion planning are fundamental problems in solid modeling and robotics. Their applications include computer-aided design, numerically-controlled machining, tolerance verificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Comput. Geometry Appl.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010